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Introduction

Objective. This book is the second of six volumes in a series dedicated to the
mathematical tools for solving partial differential equations derived from physics:

Volume 1: Banach, Fréchet, Hilbert and Neumann Spaces;

Volume 2: Continuous Functions;

Volume 3: Distributions;

Volume 4: Lebesgue and Sobolev Spaces;

Volume 5: Traces;

Volume 6: Partial Differential Equations.

This second volume is devoted to the partial differentiation of functions and the
construction of primitives, which is its inverse mapping, and to their properties, which
will be useful for constructing distributions and studying partial differential equations
later.

Target audience. We intended to find simple methods that require a minimal level
of knowledge to make these tools accessible to the largest audience possible – PhD
candidates, advanced students1 and engineers – without losing generality and even
generalizing some standard results, which may be of interest to some researchers.

1. Students? What might I have answered if one of my MAS students in 1988 had asked for more details
about the de Rham duality theorem that I used to obtain the pressure in the Navier–Stokes equations?
Perhaps I could say that “Jacques-Louis LIONS, my supervisor, wrote that it follows from the de Rham
cohomology theorem, of which I understand neither the statement, nor the proof, nor why it implies the
result that we are using.” What a despicably unscientific appeal to authority!
This question was the starting point of this work: writing proofs that I can explain to my students for
every result that I use. It took me 5 years to find the “elementary” proof of the orthogonality theorem
(Theorem 9.2, p. 194) on the existence of the primitives of a field q. I needed a way to obtain

R
Γ q

. d` = 0
for every closed path Γ from the condition

R
Ω q

. ψ = 0 for every divergence-free ψ. It gave me the greatest
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Originality. The construction of primitives, the Cauchy integral and the weighting
with which they are obtained are performed for a function taking values in a Neumann
space, that is, a space in which every Cauchy sequence converges.

Neumann spaces. The sequential completeness characterizing these spaces is the
most general property of E that guarantees that the integral of a continuous function
taking values in E will belong to it, see Case where E is not a Neumann space (§ 4.3,
p. 92). This property is more general than the more commonly considered property
of completeness, that is, the convergence of all Cauchy filters; for example, if E is
an infinite-dimensional Hilbert space, then E-weak is a Neumann space but is not
complete [Vol. 1, Property (4.11), p. 82].

Moreover, sequential completeness is more straightforward than completeness.

Semi-norms. We use families of semi-norms, instead of the equivalent notion of
locally convex topologies, to be able to define differentiability (p. 73) by comparing
the semi-norms of a variation of the variable to the semi-norms of the variation of the
value. A section on Familiarization with Semi-normed Spaces can be found on p. xiii.
Semi-norms can be manipulated in a similar fashion to normed spaces, except that we
are working with several semi-norms instead of a single norm.

Primitives. We show that any continuous field q = (q1, . . . , qd) has a primitive f ,
namely that ∇f = q, if and only if it is orthogonal to the divergence-free test fields,
that is, if

∫
Ω
q . ψ = 0E for every ψ = (ψ1, . . . , ψd) such that ∇ . ψ = 0. This is the

orthogonality theorem (Theorem 9.2).

When Ω is simply connected, for a primitive f to exist, it is necessary and sufficient
for q to have local primitives. This is the local primitive gluing theorem (Theorem 9.4).
On any such open set, it is also necessary and sufficient that it verifies Poincaré’s
condition ∂iqj = ∂jqi for every i and j to be satisfied if the field is C1 (Theorem 9.10),
or a weak version of this condition,

∫
Ω
qj∂iϕ =

∫
Ω
qi∂jϕ for every test function ϕ, if

the field is continuous (Theorem 9.11).

We explicitly determine all primitives (Theorem 9.17) and construct one that
depends continuously on q (Theorem 9.18).

Integration. We extend the Cauchy integral to uniformly continuous functions taking
values in a Neumann space, because this will be an essential tool for constructing
primitives.

mathematical satisfaction I have ever experienced to explicitly construct an incompressible tubular flow (see
p. 184). Twenty-five years later, I am finally ready to answer any other questions from my (very persistent)
students.
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The properties established here for continuous functions will also be used to
extend them to integrable distributions in Volume 4, by continuity or transposition.
Indeed, one of the objectives of the Analysis for PDEs series is to extend integration
and Sobolev spaces to take values in Neumann spaces. However, it seemed more
straightforward to first construct distributions (in Volume 3) using just continuous
functions before introducing integrable distributions (in Volume 4), which play the
role usually fulfilled by classes of almost everywhere equal integrable functions.

Weighting. The weighted function f � µ of a function f defined on an open set Ω
by the weight µ, a real function with compact support D, is a function defined on the
open set ΩD = {x ∈ Rd : x + D ⊂ Ω} by (f � µ)(x) =

∫
D̊
f(x+ y)µ(y) dy. This

concept will be repeatedly useful. It plays an analogous role to convolution, which is
equivalent to it up to a symmetry of µ when Ω = Rd.

Novelties. Many results are natural extensions of previous results, but the following
seemed most noteworthy:
— The construction of the topology of the space K(Ω;E) of continuous functions
with compact support using the semi-norms ‖f‖K(Ω;E);q = supx∈Ω q(x)‖f(x)‖E;ν

indexed by q ∈ C+(Ω) and ν ∈ NE (Definition 1.17). This is equivalent to and much
simpler than the inductive limit topology of the CK(Ω;E).
— The fact that if a function f ∈ C(Ω) satisfies supx∈Ω q(x)|f(x)| < ∞ for every
q ∈ C+(Ω), then its support is compact (Theorem 1.22). This is the basis for defining
the semi-norms of D(Ω) in Volume 3.
— The concentration theorem for the integral and the construction of an
incompressible tubular flow (Theorems 8.18 and 8.17), which are key steps in our
construction of the primitives of a field taking values in a Neumann space, as it is
explained in the comment Utility of the concentration theorem, p. 186.

Prerequisites. The proofs in the main body of the text only use definitions and results
established in Volume 1, whose statements are recalled either in the text or in the
Appendix. Detailed proofs are given, including arguments that may seem trivial to
experienced readers, and the theorem numbers are systematically referenced.

Comments. Comments with a smaller font size than the main body of the text appeal to external results or
results that have not yet been established. The Appendix on Reminders is also written with a smaller font
size, since its contents are assumed to be familiar.

Historical notes. Wherever possible, the origin of the concepts and results is given
as a footnote2.

2. Appeal to the reader. Many important results lack historical notes because I am not familiar with their
origins. I hope that my readers will forgive me for these omissions and any injustices they may discover.
And I encourage the scholars among you to notify me of any improvements for future editions!
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Navigation through the book:
— The Table of Contents at the start of the book lists the topics discussed.
— The Table of Notations, p. xv, specifies the meaning of the notation in case there
is any doubt.
— The Index, p. 243, provides an alternative access to specific topics.
— All hypotheses are stated directly within the theorems themselves.
— The numbering scheme is shared across every type of statement to make results
easier to find by number (for instance, Theorem 2.9 is found between the statements
2.8 and 2.10, which are a definition and a theorem, respectively).

Acknowledgments. Enrique FERNÁNDEZ-CARA suggested to me a large number of
improvements to various versions of this work. Jérôme LEMOINE was kind enough
to proofread the countless versions of the book and correct just as many mistakes and
oversights.

Olivier BESSON, Fulbert MIGNOT, Nicolas DEPAUW, and Didier BRESCH also
provided many improvements, in form and in substance.

Pierre DREYFUSS gave me insight into the necessity of simply connected domains
for the existence of primitives with Poincaré’s condition, as explained on p. 209 in the
comment Is simple connectedness necessary for gluing together local primitives?

Joshua PEPPER spent much time discussing about the best way to adapt this work
in English.

Thank you, my friends.

Jacques SIMON
Chapdes-Beaufort,

April 2020





Chapter 8

Line Integral of a Vector Field Along a Path

This chapter provides us two essential results to construct primitives:
— The concentration theorem (Theorem 8.18) shows that, for any field q = (q1, . . . , qd), the integralR
Ω q

. Ψ is equal to the integral
R
Γ q �ρ . d` around the closed path Γ, where Ψ is a divergence-free tubular

flow constructed in Theorem 8.18 with support in a tube of axis Γ. Some applications are mentioned in the
comment Utility of the concentration theorem (p. 186).
— The theorem on the invariance under homotopy of the line integral of local gradients (Theorem 8.20)
shows that if a field q is of the form q = ∇fB on every ball B, then its line integral

R
Γ q

. d` around a
closed path Γ is invariant under homotopy. Some applications are mentioned in the comment Utility of the
invariance theorem. . . (p. 187).

We therefore begin by studying the line integral
R
Γ q

. d`
def
=

R te
ti

(q ◦ Γ) . Γ′ dt (Definition 8.7) of a
field q ∈ C(Ω;Ed) along a path Γ ∈ C1([ti, te]; Ω). In particular:

— The line integral can be concatenated (Theorem 8.14), i.e.
R
Γ =

P
n

R
Γn

if Γ =
→
∪n Γn.

— We can reparametrize any concatenation of C1 paths, or in other words any piecewise C1 path, as a C1

path (Theorem 8.4), without changing the line integral (Theorem 8.16).
— The line integral of a gradient around a closed path is zero (Theorem 8.11), i.e.

R
Γ∇f . d` = 0.

8.1. Paths

Let us define paths and closed paths in a separated semi-normed space.

DEFINITION 8.1.– Let E be a separated semi-normed space and U ⊂ E.

(a) A path in U is a mapping Γ ∈ C([ti, te];U), where [ti, te] is a closed and bounded
interval of R.

We say that Γ joins the initial point Γ(ti) to the ending point (or terminal point)
Γ(te) in U . The image of Γ is the set [Γ] = {Γ(t) : ti ≤ t ≤ te}.

(b) A closed path is a path whose initial point and ending point coincide.
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(c) We say that a path is C1, or of class C1, if it is of the form Γ ∈ C1([ti, te];U).

In other words (Definition 2.26), a path is C1 if the derivative Γ′, which is initially
only defined on the open set (ti, te), has a continuous extension to [ti, te], still denoted
by Γ′.

Geometry. The image [Γ] of a C1 path is not necessarily a regular curve or a one-dimensional manifold. It
may just be a single point, intersect itself, form angles (between segments, see Theorem 8.4) or cusps, and
so on. �

Let us define the “reverse path,” where the initial point and ending point are
interchanged.

DEFINITION 8.2.– Let Γ ∈ C([ti, te];E) be a path in a separated semi-normed
space E. The reverse path of Γ is the path←−Γ defined on [−te,−ti] by

←−Γ (t) def= Γ(−t).

Let us concatenate two paths when the ending point of the first is the initial point
of the second.

DEFINITION 8.3.– Let Γ1 ∈ C([ti1 , te1 ];E) and Γ2 ∈ C([ti2 , te2 ];E) be two paths
in a separated semi-normed space E such that

Γ1(te1) = Γ2(ti2).

Their concatenation is the path Γ1

→∪ Γ2 defined on [ti1 , te1 + te2 − ti2 ] by:

(Γ1

→∪ Γ2)(t) def=
{

Γ1(t) for ti1 ≤ t ≤ te1 ,
Γ2(t+ ti2 − te1) for te1 ≤ t ≤ te1 + te2 − ti2 .

Let us show that we can reparametrize any concatenation of C1 paths to obtain
a C1 path.

THEOREM 8.4.– Let Γ =
→⋃

1≤n≤N Γn be the concatenation of finitely many C1

paths in Rd, and let [ti, te] be its interval of definition.

Then there exists a bijection T ∈ C1([ti, te]) from [ti, te] onto itself such that T ′

vanishes at the initial point and at the ending point of each Γn and is > 0 outside of
these points. For any such bijection,

Γ ◦ T is a C1 path.
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Proof. Let Λ ∈ C1([a, b]) be one of the pieces of Γ and

T (t) = a+ (b− a)
(

3
( t− a
b− a

)2

− 2
( t− a
b− a

)3)
.

Its derivative T ′(t) = 6(t− a)/(b− a)− 6((t− a)/(b− a))2 is continuous and > 0
on (a, b), and its extension by 0 is continuous on [a, b].

By Theorem 3.12 (c) on differentiating composite functions, Λ◦T is differentiable
and (Λ ◦ T )′(t) = (Λ′ ◦ T )(t)T ′(t). This expression tends to 0 as t → a or t → b,
since (Λ′ ◦ T )(t) remains bounded and T ′(t)→ 0.

By reparametrizing each piece Γn of Γ in this way, we obtain a function Γ ◦T that
is continuous on [ti, te], differentiable outside of the points joining different pieces
together, and whose derivative tends to 0 at each of these points. By Theorem 2.28
on extending the derivative, it follows that Γ ◦ T is differentiable at these points
and continuously differentiable on (ti, te). The extension by 0 of its derivative is
continuous on the whole of [ti, te]; in other words, Γ ◦ T ∈ C1([ti, te];E). �

Let us show that connected open sets are path connected.

THEOREM 8.5.– Any pair of points of a connected open subset U of separated semi-
normed space can be joined by a C1 path in U .

Proof. Let E be the space in question, a ∈ U , and X the set of points of U that can
be joined to a by a C1 path in U . It must be proved that X = U .

Let us first show that X is open. Let x ∈ X and {‖ ‖E;ν : ν ∈ NE} the family
of semi-norms of E. By Definition A.7 (b) of an open set, here U , there exists a finite
subset N ofNE and ε > 0 such that the ball B = {v ∈ E : supν∈N ‖v − x‖E;ν ≤ ε}
is included in U . Since x can be joined to a by a path Γ in U of class C1, every
point v of B can be joined to a by the concatenation of Γ and the line segment [x, v].
By reparametrizing this concatenation using Theorem 8.4, we obtain a C1 path that
joins v to x. Therefore, B ⊂ X , which shows that X is open in E.

Similarly, its complement Y = U \ X is open. Indeed, if we now assume that
x ∈ Y , no point of B can be joined to a by a C1 path in U , otherwise it would also be
possible for x, so B ⊂ Y .

The open setsX and Y are disjoint, cover the connected set U andX is non-empty
(since it contains a). Therefore, by Definition A.15 of a connected set, Y = ∅, and
X = U . �
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Path connected. A set is said to be path connected if any two of its points can be joined by a path.
Theorem 8.5 is slightly stronger, since it gives us C1 paths. It would also be possible to construct C∞ paths,
but this is not necessary for our purposes. �

Let us show that, conversely, any two points joined by a path belong to the same
connected component.

THEOREM 8.6.– If two points are connected by a path in a subset U of a separated
semi-normed space, then they belong to the same connected component of U .

Proof. Let E be the space in question and Γ a path in U joining two points a and b.
By Definition 8.1, the image [Γ] of this path is the image of an interval [ti, te] under
the continuous mapping Γ. Every interval being connected (Theorem A.16), [Γ] is
therefore connected (Theorem A.33). Furthermore, it is included in U (by the
hypotheses) and contains Γ(ti), that is, a.

By Definition A.15, the connected component generated by a is the largest
connected set included in U that contains a. It therefore contains [Γ] and certainly
also contains Γ(te), that is, b. �

8.2. Line integral of a field along a path

A vector field on a subset of Rd is any function with d components taking values
in a space E, or equivalently any function taking values in the Euclidean product Ed.

Let us define the line integral1 along a C1 path of a vector field taking values in a
Neumann space.

DEFINITION 8.7.– Let q ∈ C(Ω;Ed), where Ω ⊂ Rd and E is a Neumann space,
and let Γ ∈ C1([ti, te]; Ω) be a path in Ω. We denote by Γ′ the derivative of Γ.

1. History of the line integral of a field along a path. The line integral of a vector field along a path was
introduced by Gaspard-Gustave DE CORIOLIS in 1829 [26] to express the work of a force, i.e. the variation
of the kinetic energy of a body that moves under the action of this force.
This notion was developed as part of the theory of differential forms established around 1890–1900 by
Émile CARTAN [18, Vol. II, pp. 309–396] and Henri POINCARÉ [63, Vol. III, Chapter XXII]; see, for
example, [CARTAN, Henri, 19, pp. 215–219] (the son of Émile whom we mentioned above), where the
results of the sections 8.2 and 8.3 of the present book can be found with the field q “hidden” behind the
0-form ω and the gradient∇f “hidden” behind the 1-form ω or dg.

French terminology. In French, the line integral is called the circulation, a term that English-speakers
reserve for the case where the path is closed. The French term intégrale curviligne, which is the word-for-
word translation of “line integral,” is generally reserved for the line integral of a scalar function.
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The line integral of q along Γ is the element of E given by∫
Γ

q . d` def=
∫ te

ti

(q ◦ Γ) . Γ′ dt.

Inconsistent notation! If we want to be consistent with our notation for the Cauchy integral, we need to
write either

R te
ti

(q ◦ Γ)(t) . Γ′(t) dt or
R te
ti

(q ◦ Γ) . Γ′ here. However, we will add dt to the latter anyway
to mirror the usage of d`. �

Justification of Definition 8.7. For the right-hand side to be defined, by Definition 4.9
of the integral taking values in a Neumann space, the function (q ◦ Γ) . Γ′ must be
uniformly continuous on (ti, te).

To check this, observe that the composite mapping q ◦ Γ is continuous
(Theorem A.35) on [ti, te], as well as Γ′ (extended as in Definition 8.1 (c)). Their
product (q ◦ Γ) . Γ′ is therefore continuous (Theorem A.35 again) because it is
obtained by composing them with the mapping . , which is continuous by the
inequality (2.2) (p. 31). Therefore, by Heine’s theorem (Theorem A.34), (q ◦ Γ) . Γ′

is uniformly continuous on the compact set [ti, te] and thus on (ti, te).

It is also necessary for (q◦Γ) . Γ′ to have bounded support. This is the case because
[ti, te] is bounded by Definition 8.1 (a) of a path. �

Let us show that the sign of the line integral changes when the path is reversed.

THEOREM 8.8.– Let q ∈ C(Ω;Ed), where Ω ⊂ Rd and E is a Neumann space, and
let Γ be a C1 path in Ω. Then ∫

←−
Γ

q . d` = −
∫

Γ

q . d`.

Proof. By Definition 8.2 of the reverse path and Definition 8.7 of the line integral,
since d(Γ(−t))/dt = −(dΓ/dt)(−t),∫

←−
Γ

q . d` =
∫ −ti
−te

q ◦ Γ(−t) . d(Γ(−t))
dt

dt = −
∫ −ti
−te

(
q ◦ Γ . dΓ

dt

)
(−t) dt.

The integral being invariant under a symmetry by Theorem 6.18, we obtain∫
←−
Γ

q . d` = −
∫ te

ti

(
q ◦ Γ . dΓ

dt

)
(t) dt = −

∫
Γ

q . d`. �

Let us show that the line integral is invariant under an increasing change of
variables.
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THEOREM 8.9.– Let Γ be a C1 path in a subset Ω of Rd, defined on a bounded
interval [ti, te], and let T be a bijection from a bounded interval [t′i, t

′
e] onto [ti, te]

such that:
T ∈ C1([t′i, t

′
e]), T ′ > 0 on (t′i, t

′
e).

Then Γ ◦ T is a C1 path in Ω and, for every q ∈ C(Ω;Ed), where E is a Neumann
space, ∫

Γ◦T
q . d` =

∫
Γ

q . d`.

Proof. Let us first check that Γ◦T is a C1 path. By Theorem 3.12 (c) on differentiating
composite functions, on (ti, te),

(Γ ◦ T )′ = (Γ′ ◦ T )T ′. (8.1)

The right-hand side, and hence the left-hand side, is uniformly continuous because
Γ′, T and T ′ are uniformly continuous by the hypotheses, and therefore so are Γ′ ◦ T
(Theorem A.35) and its product with T ′ (Theorem 3.5 (b)). It therefore has
(Theorem A.38) a continuous extension on [t′i, t

′
e]. By Definition 8.1 (c) of a C1 path,

this proves that Γ ◦ T ∈ C1([t′i, t
′
e]; Rd).

Let us now prove the invariance of the line integral. Its Definition 8.7 gives,
together with (8.1),∫

Γ◦T
q . d` =

∫ t′e

t′i

(q ◦ Γ ◦ T ) . (Γ ◦ T )′ dt =
∫ t′e

t′i

(((q ◦ Γ) . Γ′) ◦ T )T ′ dt.

Transforming the latter expression with the change of variables formula for an integral
from Theorem 6.14 (c), where in this case |det[∇T ]| = T ′ (because∇T = T ′, which
is positive by the hypotheses) gives∫

Γ◦T
q . d` =

∫ te

ti

(q ◦ Γ) . Γ′ dt =
∫

Γ

q . d`.

It remains to be checked that T−1 is C1 because this is assumed by Theorem 6.14 (c).
Since T ′ > 0, Theorem A.55 on differentiating the inverse of a function implies
that T−1 is continuous and differentiable and (T−1)′(t) = 1/(T ′(T−1(t))). In other
words, (T−1)′ = Q◦T ′ ◦T−1, whereQ(x) = 1/x. Therefore, (T−1)′ is continuous,
like any composition of continuous mappings (Theorem A.35), since, in addition to T ′

and T−1, Q is also continuous (from (0,∞) into R, by Theorem A.56). �

Independence of the parametrization. By Theorems 8.8 and 8.9, the line integral along a path Γ of
class C1 only depends on its geometry (in other words, its image [Γ]) and the direction along which it is
integrated. �
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Line integral along a curve. If the image [Γ] of Γ is a rectifiable curve,Z
Γ
q . d` =

Z
[Γ]
q . τ dσ,

where dσ is the infinitesimal arc length of [Γ] and τ is the oriented unit tangent vector, i.e. τ = Γ′/|Γ′|
whenever Γ is a C1 injection such that Γ′ does not vanish. �

Let us calculate the line integral along a path consisting of a single point or along
a rectilinear path.

THEOREM 8.10.– Let q ∈ C(Ω;Ed), where Ω ⊂ Rd and E is a Neumann space,
and let a and x be two points of Ω such that [a, x] ⊂ Ω. Then:

(a) If Γ{a} is the path defined on [0, 1] by Γ{a}(t) = a,

∫
Γ{a}

q . d` = 0E .

(b) If Γ #  ”a,x is the rectilinear path defined on [0, 1] by Γ #  ”a,x(t) = a+ t(x− a),

∫
Γ #  ”a,x

q . d` = (x− a) .
∫ 1

0

q(a+ t(x− a)) dt.

Proof. Apply Definition 8.7 of the line integral and the equalities da/dt = 0 and
d(a+ t(x− a))/dt = x− a, respectively. �

Let us calculate the line integral of a gradient.

THEOREM 8.11.– Let f ∈ C1(Ω;E), where Ω is an open subset of Rd and E is a
Neumann space, and let Γ be a C1 path in Ω. Then:

(a) If a is the initial point of Γ and b is its ending point,∫
Γ

∇f . d` = f(b)− f(a).

(b) If Γ is a closed path, ∫
Γ

∇f . d` = 0E .
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Proof. (a) By Theorem 3.12 (a) on changes of variables in a derivative with ` = 1 and
∂i = d/dt,

(f ◦ Γ)′ =
d∑
j=1

(∂jf ◦ Γ) Γ′j = (∇f ◦ Γ) . Γ′.

Definition 8.7 of the line integral therefore gives∫
Γ

∇f . d` =
∫ te

ti

(∇f ◦ Γ) . Γ′ dt =
∫ te

ti

(f ◦ Γ)′ dt.

With Theorem 6.4 (b) on calculating the integral of a derivative, this gives∫
Γ

∇f . d` = (f ◦ Γ)(te)− (f ◦ Γ)(ti) = f(b)− f(a).

(b) This follows from (a) because the ending point of a closed path coincides with its
initial point by Definition 8.1 (b). �

Let us show that the line integral of a vector field depends continuously on the
vector field.

THEOREM 8.12.– Let Ω ⊂ Rd, E a Neumann space and Γ a C1 path in Ω. Then:

(a) For every q ∈ C(Ω;Ed) and every semi-norm ‖ ‖E;ν of E,∥∥∥∫
Γ

q . d`
∥∥∥
E;ν
≤ γ |te − ti| sup

x∈[Γ]

‖q(x)‖Ed;ν ,

where [Γ] = {Γ(t) : ti < t < te} and γ = supti<t<te |Γ′(t)| <∞.

(b) The mapping q 7→
∫

Γ

q . d` is linear and continuous from C(Ω;Ed) into E.

Proof. (a) Definition 8.7 of the line integral and the bound on the semi-norms of the
integral from Theorem 4.15 give∥∥∥∫

Γ

q . d`
∥∥∥
E;ν

=
∥∥∥∫ te

ti

(q ◦ Γ) . Γ′ dt
∥∥∥
E;ν
≤

≤ |te − ti| sup
ti<t<te

‖((q ◦ Γ) . Γ′)(t)‖E;ν ≤ γ |te − ti| sup
x∈[Γ]

‖q(x)‖Ed;ν ,

where γ = supti<t<te |Γ′(t)|. This quantity is finite since, by Definition 8.1 (c) of
a C1 path, Γ′ may be continuously extended to [ti, te], and since a continuous function
on a compact set is bounded (Theorem A.34).



Line Integral of a Vector Field Along a Path 181

(b) By Definition 1.3 (a) of the semi-norms of C(Ω;Ed), the above inequality can be
stated as ∥∥∥∫

Γ

q . d`
∥∥∥
E;ν
≤ c sup

x∈[Γ]

‖q(x)‖Ed;ν = c ‖q‖C(Ω;Ed);[Γ],ν ,

which implies the desired continuity by the characterization of continuous linear
mappings from Theorem 1.25. �

8.3. Line integral along a concatenation of paths

Let us define the notion of a piecewise C1 path.

DEFINITION 8.13.– A piecewise C1 path is a concatenation of finitely many C1

paths.

Let us first show that the line integral along a C1 concatenation of paths is the sum
of the line integrals along each piece.

THEOREM 8.14.– Let q ∈ C(Ω;Ed), where Ω ⊂ Rd and E is a Neumann space,
and let Γ, Γ1, . . . , and ΓN be C1 paths in Ω such that

Γ =
→⋃

1≤n≤N
Γn.

Then ∫
Γ

q . d` =
∑

1≤n≤N

∫
Γn

q . d`.

Proof. By Definition 8.7 of the line integral, we have to show that∫ te

ti

(q ◦ Γ) . Γ′ dt =
∑

1≤n≤N

∫ ten

tin

(q ◦ Γ) . Γ′ dt.

It follows from the additivity with respect to the interval of integration (Theorem 6.2)
since, by Definition 8.3 of concatenation, ti = ti1 . . . < ten = tin+1 < . . . teN = te.

�

Let us now extend this property to piecewise C1 paths that are not necessarily C1

as a whole by using it as the definition of the line integral along such a path.



182 Continuous Functions

DEFINITION 8.15.– Let q ∈ C(Ω;Ed), where Ω ⊂ Rd and E is a Neumann space,
and consider a piecewise C1 path in Ω

Γ =
→⋃

1≤n≤N
Γn.

The line integral of q along Γ is here the element of E defined by∫
Γ

q . d` def=
∑

1≤n≤N

∫
Γn

q . d`.

Justification. The notation
∫

Γ
is admissible because, when Γ is C1, it has the same line

integral as in Definition 8.7 by the additivity property of Theorem 8.14.

This definition is still admissible for piecewise C1 paths because the line integral
does not depend on how Γ is partitioned into C1 pieces, even though there are infinitely
many possible partitions. Indeed, it is equal to the line integral of the minimal partition,
which is unique. More precisely, define t1 = ti, then define ti+1 inductively as the
largest real number such that the restriction Λi of Γ to [ti, ti+1] is a C1 path. Repeat
until tI+1 = te. Then

Γ =
→∪

1≤i≤I
Λi.

This partition, called the minimal partition, only depends on Γ and not on the original
partition into Γn. We indeed find the line integral of this minimal partition from the
above definition, since, for every i ∈ J1, IK, there exists ni ∈ N such that
Λi =

→∪ni≤n<ni+1 Γn, and therefore, again by the additivity property of
Theorem 8.14,∑

1≤n≤N

∫
Γn

q . d` =
∑

1≤i≤I

∑
ni≤n<ni+1

∫
Γn

q . d` =
∑

1≤i≤I

∫
Λi

q . d`. �

Let us show reparametrizing a piecewise C1 path as a C1 path does not change the
line integral.

THEOREM 8.16.– Let q ∈ C(Ω;Ed), where Ω ⊂ Rd and E is a Neumann space,
and consider a piecewise C1 path in Ω

Γ =
→⋃

1≤n≤N
Γn.

Let T be a reparametrization of Γ as a C1 path, that is, let T be a bijection from the
interval on which Γ is defined onto itself as given by Theorem 8.4. Then∫

Γ◦T
q . d` =

∫
Γ

q . d`
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and, for every n ∈ J1, NK, ∫
Γn◦T

q . d` =
∫

Γn

q . d`.

Proof. For each piece Γn of Γ, Theorem 8.9 on changes of variables in the line integral
along a C1 path gives, since T is C1 on [tin , ten ] and T ′ > 0 on (tin , ten),∫

Γn◦T
q . d` =

∫
Γn

q . d`.

Since Γ ◦ T is the concatenation of the Γn ◦ T , Definition 8.15 of the line integral
along a piecewise C1 path gives∫

Γ◦T
q . d` =

∑
n

∫
Γn◦T

q . d` =
∑
n

∫
Γn

q . d` =
∫

Γ

q . d`. �

8.4. Tubular flow and the concentration theorem

Let us construct a divergence-free test field with support in a tubular neighborhood
of a path2.

By definition, the divergence3 of ψ is∇ . ψ = ∂1ψ1 + · · · ∂dψd.

THEOREM 8.17.– Let T = [Γ] + B, known as a tube, where Γ ∈ C1([ti, te]; Rd) is
a closed path in Rd, [Γ] = {Γ(t) : ti ≤ t ≤ te} is its image andB is a compact subset
of Rd. Additionally, let ρ ∈ C∞B (Rd).

We define Ψ ∈ C∞T (Rd; Rd), known as the tubular flow, by

Ψ(x) def=
∫ te

ti

ρ(x− Γ(t)) Γ′(t) dt.

It satisfies
∇ . Ψ = 0.

2. History of the construction of a tubular flow. The divergence-free field Ψ from Theorem 8.17 was
obtained by Jacques SIMON in 1993 [70, Lemma, p. 1170] by constructing a concentrated incompressible
flow ~δΓ and then regularizing it, as explained in the comment Underlying idea: the concentrated flow on
the next page.
The concentrated incompressible field was also constructed by Stanislav Konstantinovitch SMIRNOV in
1993 [76, p. 842] to conversely decompose any incompressible field ψ into an integral ψ =

R
µ
~δΓµdµ of

concentrated fields.
3. History of the divergence. The term divergence was introduced by William Kingdon CLIFFORD in 1878
[24].
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Terminology. We speak of a tubular flow because Ψ is the velocity field of an incompressible flow
(meaning that the divergence is zero) with support in the tube T of axis [Γ] (see Figure 8.1). This flow
is stationary outside of T and the flux through any section S of T with the same orientation as Γ is equal
to 1. �

Utility of tubular flows. Constructing such a flow is a key step in our construction of primitives, through
the concentration theorem (Theorem 8.18), as it is explained in the comment Utility . . . , p. 186. �

Underlying idea: the concentrated flow. The function Ψ is the regularized function ~δΓ � ρ of the
distribution ~δΓ ∈ D′(Rd; Rd) of support [Γ] defined, for every φ ∈ D(Rd; Rd), by

〈~δΓ, φ〉 =

Z
Γ
φ . d`.

This distribution represents a “concentrated” incompressible flow on [Γ]. If [Γ] is a regular curve, then, at
each point of Γ, the “concentrated vector” ~δΓ is “equal” to the tangent vector with the same orientation as Γ.

This distribution ~δΓ is divergence free, namely∇ . ~δΓ = 0, because, for every ϕ ∈ D(Rd),

〈∇ . ~δΓ, ϕ〉 = −〈~δΓ,∇ϕ〉 = −
Z

Γ
∇ϕ . d` = 0,

since the line integral of a gradient around a closed path is always zero (Theorem 8.11 (b)). Therefore, the
field Ψ = ~δΓ � ρ is also divergence free, since

∇ . Ψ = ∇ . (~δΓ � ρ) = (∇ . ~δΓ) � ρ = 0. �

T
[Γ]

Figure 8.1. Divergence-free tubular flow in the tube T of axis [Γ]

Proof of Theorem 8.17. Regularity of Ψ. Its definition can be written as

Ψ(x) = L(R(x)),

where, for every g ∈ C(Rd),

L(g) def=
∫ te

ti

g(−Γ(t)) Γ′(t) dt,

and where R(x)(y) = ρ(x+ y), i.e. R(x) = τ−xρ, where τx is a translation.
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By the bound on the semi-norms of the integral from Theorem 4.15 and
Definition 1.3 (b) of the semi-norms (in this case just the norm) of Cb(Rd),

|L(g)| ≤ |te − ti| sup
y∈Rd

|g(y)| sup
ti≤t≤te

|Γ′(t)| = γ ‖g‖Cb(Rd),

where γ only depends on Γ. By the characterization of continuous linear mappings
from Theorem 1.25, this implies that L ∈ L(Cb(Rd); Rd). But R ∈ C∞(Rd; Cb(Rd))
by the differentiability properties of the translation from Theorem 3.18 (d), since
ρ ∈ K∞(Rd) by the hypotheses. The composite mapping L ◦R, namely Ψ, therefore
(Theorem 3.2) belongs to C∞(Rd; Rd).

Support of Ψ. If x /∈ [Γ] + B, then, for every t ∈ [ti, te], we have x − Γ(t) /∈ B,
so ρ(x− Γ(t)) = 0, and hence Ψ(x) = 0. The support of Ψ is therefore included in
the tube T = [Γ] + B, which is compact (as a sum of compact subsets of Rd, see
Theorem A.24).

Divergence of Ψ. Let x ∈ Rd. Since each mapping Li is continuous and linear from
Cb(Rd) into R, it commutes with the partial derivative ∂i by Theorem 3.1, so

d∑
i=1

∂iΨi(x) =
d∑
i=1

∂i(Li(R(x))) =
d∑
i=1

Li(∂i(R(x))) =

=
∫ te

ti

d∑
i=1

∂iρ(x− Γ(t)) Γ′i(t) dt =
∫ te

ti

∇r(Γ(t)) . Γ′(t) dt,

where r(y) = −ρ(x− y). The right-hand side is Definition 8.7 of the line integral of
∇r around the closed path Γ, so, by Theorem 8.11 (b), it is zero. In other words,

(∇ . Ψ)(x) =
∫

Γ

∇r . d` = 0. �

Let us show that, for any field q, the integral
∫

Ω
q . Ψ is equal to the “concentrated”

integral along Γ,
∫

Γ
q � ρ . d`. We call this result the concentration theorem4.

THEOREM 8.18.– Let q ∈ C(Ω;Ed), where Ω is an open subset of Rd and E is a
Neumann space.

Let T = [Γ] +B be a tube included in Ω, where Γ is a closed C1 path in Ω and B
is a compact subset of Rd, ρ ∈ C∞B (Rd), and Ψ ∈ C∞T (Rd; Rd) is the tubular flow
given by Theorem 8.17. Then∫

Ω

q(x) . Ψ(x) dx =
∫

Γ

q � ρ . d`.

4. History of the concentration theorem. Theorem 8.18 was established for a Banach spaceE by Jacques
SIMON in 1993 [72, p. 207, last equality].
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Utility of the concentration theorem. Theorem 8.18 is a key step of our proof of the orthogonality theorem
(Theorem 9.2), namely the construction of a primitive of a field q taking values in a Neumann space that is
orthogonal to divergence-free test fields. Indeed, the concentration theorem is used to deduce the conditionR
Γ q

. d` = 0E for any closed path Γ from the orthogonality condition
R
Ω q

. ψ = 0E , enabling us to
explicitly construct a primitive, (see the equality (9.4), p. 195). �

Proof of Theorem 8.18. By permuting the variables with Theorem 6.5, the definition
of Ψ gives∫

Ω

q(x) . Ψ(x) dx =
∫

Ω

d∑
i=1

qi(x)
(∫ te

ti

ρ(x− Γ(t)) Γ′i(t) dt
)

dx =

=
∫ te

ti

d∑
i=1

(∫
Ω

qi(x) ρ(x− Γ(t)) dx
)

Γ′i(t) dt.

In other words, together with the expression of the weighted function from
Theorem 7.2 (c) and Definition 8.7 of the line integral,∫

Ω

q(x) . Ψ(x) dx =
∫ te

ti

d∑
i=1

(qi � ρ)(Γ(t)) Γ′i(t) dt =

=
∫ te

ti

(q � ρ)(Γ(t)) . Γ′(t) dt =
∫

Γ

q � ρ . d`. �

8.5. Invariance under homotopy of the line integral of a local gradient

Let us define the notion of homotopy.

DEFINITION 8.19.– Let U be a subset of a separated semi-normed space.

Two closed paths Γ and Γ∗ in U defined on the same interval [ti, te] are homotopic
in U if we can transform one into the other by means of a continuous deformation. In
other words, if there exists H ∈ C([ti, te] × [0, 1];U) such that, for every t ∈ [ti, te]
and s ∈ [0, 1],

H(t, 0) = Γ(t), H(t, 1) = Γ∗(t), H(ti, s) = H(te, s).

The image of H is the set [H] = {H(t, s) : ti ≤ t ≤ te, 0 ≤ s ≤ 1}.

Let us show that, if a field is locally a gradient, its line integral around closed paths
is invariant under homotopy. We call this result the theorem on the invariance under
homotopy of the line integral of a local gradient5.

5. History of the theorem on the invariance under homotopy of the line integral of a local gradient.
We are not familiar with the origin of Theorem 8.20. It is a classical result of the theory of differential
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THEOREM 8.20.– Let q ∈ C(Ω;Ed), where Ω is an open subset of Rd and E is a
Neumann space such that, for every open ball B b Ω, there exists fB ∈ C1(B;E)
satisfying:

∇fB = q on B.

Then, if Γ and Γ∗ are two closed C1 paths that are homotopic in Ω,∫
Γ

q . d` =
∫

Γ∗

q . d`.

Utility of the theorem on the invariance under homotopy of the line integral of a local
gradient. Theorem 8.20 is a key step in proving existence results for primitives on a simply connected
open set using the gluing theorem for local primitives (Theorem 9.4):
— Primitive of a field of C1 functions satisfying Poincaré’s condition (Theorem 9.10) or of a merely
continuous field satisfying a weaker version of this condition (Theorem 9.11).
— Stream function of a two-dimensional divergence-free field (Theorem 9.12). �

Proof of Theorem 8.20. Intermediate closed paths. After reparametrizing Γ and Γ∗
with Theorem 8.9 if necessary, we may assume that they are defined on [0, 1]. Let H
be a homotopy between Γ and Γ∗ in Ω; in other words, let H ∈ C([0, 1] × [0, 1]; Ω)
such that, for every t and s in [0, 1],

H(t, 0) = Γ(t), H(t, 1) = Γ∗(t), H(0, s) = H(1, s).

Define N + 1 closed paths Γn ∈ C([0, 1]; Ω), where n ∈ J0, NK, by

Γn(t) = H
(
t,
n

N

)
.

Split each Γn into N pieces Γmn ∈ C([m/N, (m+ 1)/N ]; Ω), where m ∈ J0, N − 1K,
defined by Γn(t) = H(t, n/N), so (see Figure 8.2),

Γn = Γ0
n

→∪ Γ1
n

→∪ . . .→∪ ΓN−1
n .

Finally, define the intermediate points amn , where n ∈ J0, NK and m ∈ J0, NK, by

amn = H
(m
N
,
n

N

)
and denote by Tmn = Γ #               ”

amn ,a
m
n+1

the transverse rectilinear path joining amn to amn+1.

forms taking values in a Banach space. It can be seen, for example, in [CARTAN, Henri, 19, Theorem 3.7.3,
p. 229], where the field q is “hidden” behind the 1-form ω and the existence of fB such that ∇fB = q
corresponds to the hypothesis that “ω is closed”.
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ΩΓn
am

n

Bm
n

Γ∗
Bm

n

am+1
n

Γm
n

am
n

Γ am
n+1

am+1
n+1

Tm
n

Γn

Γn+1

Figure 8.2. Intermediate closed paths

The image [H] = {H(t, s) : 0 ≤ t ≤ 1, 0 ≤ s ≤ 1} is compact as the image of a
compact set, here [0, 1] × [0, 1], under a continuous mapping (Theorem A.33). Thus,
by the strong inclusion theorem (Theorem A.22), there exists δ > 0 such that

[H] +B(0, δ) ⊂ Ω.

Choose N sufficiently large that |t − t′| ≤ 1/N and |s − s′| ≤ 1/N imply that
|H(t, s) − H(t′, s′)| ≤ δ/3, and let Bmn be the open ball of center amn and radius
2δ/3. Then

the paths Γmn , Γmn+1, Tmn and Tm+1
n are included in Bmn .

Invariance of the line integral along the Γn. By the hypotheses, there exists a function
fmn ∈ C1(Bmn ;E) such that

q = ∇fmn on Bmn .

The formula for the line integral of a gradient (Theorem 8.11 (a)) gives∫
Γmn+1

q . d`−
∫

Γmn

q . d` =
∫

Γmn+1

∇fmn . d`−
∫

Γmn

∇fmn . d` =

=
(
fmn (am+1

n+1 )− fmn (amn+1)
)− (fmn (am+1

n )− fmn (amn )
)

=

=
∫
Tm+1
n

q . d`−
∫
Tmn

q . d`.

Summing over m from 0 to N − 1, we obtain∫
Γn+1

q . d`−
∫

Γn

q . d` =
∫
TNn

q . d`−
∫
T 0
n

q . d`.

The right-hand side of the equation is zero because the paths T 0
n and TNn coincide.

Indeed, T 0
n joins the initial points a0

n and a0
n+1 of Γn and Γn+1, while TNn joins their
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ending points aNn and aNn+1, and these ending points coincide with the initial points,
since

a0
n = H

(
0,
n

N

)
= H

(
1,
n

N

)
= aNn ,

and similarly a0
n+1 = aNn+1. Therefore,∫

Γn+1

q . d`−
∫

Γn

q . d` = 0E .

This holds for each n, so ∫
ΓN

q . d` =
∫

Γ0

q . d`.

This proves the stated result, since Γ0 = Γ and ΓN = Γ∗. �

Stokes’ formula. Theorem 8.20 on the invariance under homotopy is a (non-elementary) variant of Stokes’
formula6 Z

∂H
σ =

Z
H

dσ,

where σ is an exterior differential k-form and H is a k+1-chain. Details may be found, for example, in
[BOURBAKI, 15, § 11.3.4, p. 49], when σ takes values in a Banach space E.

Indeed, the hypothesis∇fB = q gives ∂iqj = ∂i∂jfB = ∂j∂ifB = ∂jq, so the differential 1-form
σ = Σjqj dxj satisfies

dσ = Σij∂iqj dxi ∧ dxj = Σi<j(∂iqj − ∂jqi) dxi ∧ dxj = 0E .

Since a homotopy H between Γ and Γ∗ is an oriented 2-chain with boundary ∂H =
−→
Γ ∪←−Γ∗, it follows

that Z
Γ
q . d`−

Z
Γ∗
q . d` =

Z
∂H

σ =

Z
H

dσ = 0E . �

6. History of Stokes’ formula. We did not find any specific references about the origin of this
formula. Attributed to Sir George Gabriel STOKES, it was supposedly discovered by Mikhail Vasilyevitch
OSTROGRADSKY around 1820 and then rediscovered by Lord KELVIN. It can also be found associated with
names such as Carl Friedrich GAUSS and George GREEN in various forms, among which is the formula of
Theorem 10.8.





Chapter 9

Primitives of Continuous Functions

The purpose of this chapter is determine the conditions under which a continuous field q = (q1, . . . , qd)
admits a primitive f , that is, a function f satisfying∇f = q.

We begin by explicitly constructing a primitive when
R
Γ q · d` = 0 for every closed path Γ in Ω

(Theorem 9.1) by integrating q along paths. From this, we deduce that it is sufficient for q to be orthogonal
to the divergence-free test fields, in other words, to have

R
Ω q

. ψ = 0 for every ψ such that ∇ . ψ = 0
(Theorem 9.2), using a tubular flow as a test field and its integral concentration property. This is the
orthogonality theorem. These conditions are in fact both necessary and sufficient.

We then show that, when Ω is simply connected, it suffices that there exists a primitive on every ball
B ⊂ Ω (Theorem 9.4), thanks to the theorem on the invariance under homotopy of the line integral. This is
the primitive gluing theorem. We therefore construct such local primitives:
— When q is C1 and ∂iqj = ∂jqi (for every i and j), by integrating q along line segments (Theorem 9.5).
This is Poincaré’s theorem.
— When q is merely continuous and

R
Ω qj∂iϕ =

R
Ω qi∂jϕ for every test function ϕ (Theorem 9.7), by

regularization. This condition is a weak version of the Poincaré condition.

Thus, when Ω is simply connected, there exists a primitive whenever either the Poincaré condition or
its weak version are satisfied (Theorems 9.10 and 9.11). These conditions are necessary and sufficient.

We compare these conditions in Theorem 9.14. Finally, we show that, if the primitive exists, it is unique
up to an additive constant on each connected component Ωm of Ω and that, by fixing its values at a point
of each Ωm, we obtain a continuous mapping q 7→ f (Theorem 9.18).

9.1. Explicit primitive of a field with line integral zero

Let us explicitly construct a primitive q∗ of a field q = (q1, . . . , qd), that is, a
function q∗ satisfying ∇q∗ = q, whenever the line integral of q is zero around every
closed path1.

1. History of the explicit construction of a primitive in Theorem 9.1. We do not know the origin of this
result, which is a classical result of the theory of differential forms taking values in a Banach space (see, for
example, [Henri CARTAN, 19, Theorem 3.4.3, p. 220], where q is “hidden” behind the differential form ω).
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THEOREM 9.1.– Let q ∈ C(Ω;Ed), where Ω is an open subset of Rd and E is a
Neumann space, such that, for every closed path Γ in Ω of class C1,∫

Γ

q . d` = 0E . (9.1)

On each connected component Ωm of Ω, choose a point am. Then:

(a) For each m and each x ∈ Ωm, the element of E defined by

q∗(x) def=
∫

Γ(am,x)

q . d`

is independent of the path Γ(am, x) of class C1 joining am to x in Ωm (such a path
always exists).

(b) We have q∗ ∈ C1(Ω;E) and
∇q∗ = q.

(c) If the line segment [am, x] is included in Ω,

q∗(x) = (x− am) .
∫ 1

0

q(am + t(x− am)) dt.

Optimality of Theorem 9.1 (b). The condition (9.1) is necessary and sufficient for q to have a primitive
because, if q = ∇q∗, then

R
Γ q ·d` = 0, since the line integral of a gradient around a closed path is always

zero (Theorem 8.11 (b)). �

Inconsistent notation. Here, we have denoted the primitive by q∗, but elsewhere it is always denoted by
f . This is intentional to highlight that q∗ is a special, explicit primitive, whereas f is arbitrary. �

Proof of Theorem 9.1. (a) Since each connected component Ωm of Ω is connected
and open (Theorem A.16), each of its points x is joined (Theorem 8.5) to the point am
by a path Γ(am, x) in Ωm, and therefore in Ω, of class C1.

Let us check that
∫

Γ(am,x)
q . d` does not depend on the path Γ joining am to x.

Let Γ and Γ∗ be two such paths. The concatenation Γ
→∪←−Γ∗ of Γ and of the reverse

path of Γ∗ is a piecewise closed C1 path. By Definition 8.15 of the line integral along
a concatenation, and since the sign of the line integral changes along the reverse path
by Theorem 8.8,∫

Γ
→∪←−Γ∗

q . d` =
∫

Γ

q . d`+
∫
←−
Γ∗

q . d` =
∫

Γ

q . d`−
∫

Γ∗

q . d`.
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Reparameterizing this path using Theorem 8.4, we obtain, by Theorem 8.16, a
closed C1 path with the same line integral, which is zero by the hypotheses.
Therefore, we indeed have ∫

Γ

q . d` =
∫

Γ∗

q . d`.

(b) We need to show that q∗ is continuously differentiable and ∂iq∗ = qi. Let x ∈ Ω,
η > 0 such that the ball {y ∈ Rd : |y − x| ≤ η} is included in Ω, and let s be a
non-zero real number such that |s| ≤ η.

Again by Definition 8.15 and Theorem 8.8, the definition of q∗ gives

q∗(x+ sei)− q∗(x) =
∫

Γ(a,x+sei)

q . d`−
∫

Γ(a,x)

q . d` =
∫

Λ

q . d`,

where Λ =
←−−−−
Γ(a, x)

→∪ Γ(a, x+ sei). Since the path Λ joins x to x + sei and the line
integral is independent of the path joining these two points by (a), this equation holds
when Λ is chosen to be the rectilinear path Γ #              ”

x,x+sei
. The formula for the line integral

along such a path from Theorem 8.10 (b) gives

q∗(x+ sei)− q∗(x) = sei .
∫ 1

0

q(x+ tsei) dt = s

∫ 1

0

qi(x+ tsei) dt.

Therefore,

q∗(x+ sei)− q∗(x)− sqi(x) = s

∫ 1

0

(qi(x+ tsei)− qi(x)) dt.

For every semi-norm ‖ ‖E;ν ofE, the bound on the semi-norms of the Cauchy integral
from Theorem 4.15 gives

‖q∗(x+ sei)− q∗(x)− sqi(x)‖E;ν ≤ |s| sup
0≤r≤s

‖qi(x+ rei)− qi(x)‖E;ν .

For every ε > 0, we can choose η such that the right-hand side is ≤ ε |s| because qi is
continuous, so by the characterization of the partial derivatives (2.7) from
Definition 2.8,

∂iq
∗(x) = qi(x).

Since its partial derivatives are continuous, q∗ indeed belongs to C1(Ω;E) by
Theorem 2.10.

(c) This is again the formula for the line integral along a rectilinear path from
Theorem 8.10 (b). �

Connected components of an open subset of Rd. Let us observe that the number of points am that must
be chosen in Theorem 9.1 is countable (and possibly finite) since:

Every open subset U of Rd has, at most, countably many connected components. (9.2)
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Proof. By Theorem A.16, the connected components of U are pairwise disjoint and each of them is open
and therefore contains a point of Qd. Therefore, the set of them is countable as the image of a countable set
(Theorem A.2 (b)), here a subset of Qd (which is countable by Theorem A.2 (a), (d) and (c)). �

9.2. Primitive of a field orthogonal to the divergence-free test fields

Let us show that a field q = (q1, . . . , qd) has a primitive f whenever it is
“orthogonal” to every divergence-free test field ψ = (ψ1, . . . , ψd). This is the
orthogonality theorem2.

THEOREM 9.2.– Let q ∈ C(Ω;Ed), where Ω is an open subset of Rd and E is a
Neumann space, such that:∫

Ω

q . ψ = 0E , ∀ψ ∈ K∞(Ω; Rd) such that ∇ . ψ = 0. (9.3)

Then there exists f ∈ C1(Ω;E) such that

∇f = q.

Optimality of Theorem 9.2. The condition (9.3) is necessary and sufficient for q to have a primitive, since,
if q = ∇f , then∇ · ψ = 0 impliesZ

Ω
q · ψ =

Z
Ω

dX
i=1

∂if ψi = −
Z

Ω
f

dX
i=1

∂iψi = −
Z

Ω
f ∇ . ψ = 0E . �

2. History of the existence of primitives for fields that are orthogonal to the divergence-free test fields.
Real values. Theorem 9.2 is a special case of the orthogonality theorem for distributions given in Vol. 3,
which follows from the cohomology theorem of Georges DE RHAM in the case E = R. The latter showed
in 1955 [28, Theorem 17’, p. 114] that a current T is homologous to 0 if and only if T (ψ) = 0 for every
form ψ that is C∞, closed, and has compact support (currents generalize differential forms on a manifold
in the same way that distributions generalize functions; for a differential form, this result means that every
closed differential form is exact).
Jacques-Louis LIONS observed in 1969 [56, p. 69] that the orthogonality theorem for real distributions,
and therefore for continuous functions, follows from the result of DE RHAM by considering the current
T = q1dx1 + · · ·+ qndxn (a good explanation of the transition from differential forms to primitives is
given for functions in [RUDIN, 66, § 10.42 and 10.43, pp. 262–264]).
In light of the importance of this result when solving the Navier–Stokes equations, various more direct
and elementary proofs have been given for specific examples of distributions or real functions: by Olga
LADYZHENSKAYA in 1963 [50, Theorem 1, p. 28] for q ∈ (L2(Ω))d; by Luc TARTAR in 1978 [78] for
q ∈ (H−1(Ω))d; and by Jacques SIMON in 1993 [70] for every q ∈ (D′(Ω))d.

Vector values. Jacques SIMON proved Theorem 9.2 for a Banach space E in 1993 [71, Theorem 5 (i),
p. 4]. Here, we use the same method, which is based on the concentration theorem (Theorem 8.18). (The
proof given by Georges DE RHAM [28] does not seem to extend to this case, since it uses the reflexivity
properties of spaces of currents.)
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Orthogonality. Generalizing the notion of orthogonality with respect to a scalar product, we can say that
a field q satisfying (9.3) is orthogonal to K∞div(Ω; Rd) = {ψ ∈ K∞(Ω; Rd) : ∇ . ψ = 0} with respect to
the bilinear mapping (q, ψ) 7→

R
Ω q

. ψ from C(Ω;Ed)×K∞(Ω; Rd) into E.

We can say that the space C∇(Ω;Ed) of fields that are gradients is the orthogonal complement of the
space K∞div(Ω; Rd) since the condition (9.3) is equivalent to q ∈ C∇(Ω;Ed). This can be denoted as

C∇(Ω;Ed) = (K∞div(Ω; Rd))⊥. �

Proof of Theorem 9.2. Let Γ be a closed path C1 in Ω. Since its image [Γ] is compact,
by the separation theorem (Theorem A.22), there exists r > 0 such that the tube
T = [Γ] +B(0, r) is included in Ω. Let nΓ be an integer ≥ 1/r.

For every n ≥ nΓ, let Ψn ∈ C∞Tn(Rd; Rd), where Tn = [Γ] + B(0, 1/n), be the
tubular flow given by Theorem 8.17, related to the regularizing function ρn given by
Definition 7.7 (a). It satisfies∇ . Ψn = 0 and its restriction belongs to K∞(Ω; Rd) by
Theorem 2.16 (c), so the hypothesis (9.3) gives∫

Ω

q . Ψn = 0E .

The concentration theorem (Theorem 8.18) then gives∫
Γ

q � ρn . d` =
∫

Ω

q . Ψn = 0E . (9.4)

Now, [Γ] ⊂ ΩB(0,r) ⊂ ΩB(0,1/nΓ) by Theorem 7.3 and therefore q � ρn → q in
C(ΩB(0,1/nΓ);E) by Theorem 7.9 (a). Therefore,∫

Γ

q � ρn . d`→
∫

Γ

q . d`,

since the line integral depends continuously on q (Theorem 8.12 (b)) and hence
sequentially continuously on q (Theorem A.29). In the limit,∫

Γ

q . d` = 0E .

This implies the existence of f such that∇f = q by Theorem 9.1. �

9.3. Gluing of local primitives on a simply connected open set

Let us define the notion of simply connected set.

DEFINITION 9.3.– A subsetU of a separated semi-normed space is said to be simply
connected if every closed path of U is homotopic in U to a closed path consisting of
a single point.
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Simple connectedness versus connectedness. The term “simply connected” is unfortunately not defined
in the same way by all authors. For some, it requires connectedness, which is not the case here.

To require connectedness, it suffices to replace the condition “every closed path is homotopic to a
point” with “every closed path is homotopic to every point of U .” �

Simple connectedness in Rd versus the presence of “holes”:
— The space Rd is simply connected (this can be verified by choosing T (t, s) = (1− s) Γ(t)).
— In R, every open set is simply connected, even if it has holes.
— In R2, an open set is simply connected if and only if it does not have holes. For instance, the crown
{x ∈ R2 : 1 < |x| < 2} is connected but not simply connected.
— In Rd, d ≥ 3, simply connected open sets can have holes. For instance, the set {x ∈ R3 : 1 < |x| < 2}
is both connected and simply connected. �

Simple connectedness of star-shaped sets. In a separated semi-normed space:

Every star-shaped set is connected and simply connected. (9.5)

Proof. Let U be a set that is star shaped with respect to a point a, that is, for every z ∈ U , the line segment
[a, z] is included in U .

It is simply connected because every closed path Γ is homotopic in U to the path consisting of the
single point {a} via the homotopy H(t, s) = sa+ (1− s)Γ(t).

It is connected because if it was covered by two disjoint non-empty open sets O1 and O2, then a
would belong to one of them, say O1, and O2 would contain a point z of U . The sets
Ui = {s ∈ R : a+ s(z − a) ∈ Oi} would then form an open covering of the interval [0, 1], which
contradicts its connectedness (Theorem A.16). �

Let us show that, on a simply connected open set, if a field is locally a gradient,
then it is a gradient. In other words, if the field has local primitives, then it has a global
primitive. We call this the local primitive gluing theorem3.

THEOREM 9.4.– Let q ∈ C(Ω;Ed), where E is a Neumann space and

Ω is a simply connected open subset of Rd,

such that, for every open ball B b Ω, there exists fB ∈ C1(B;E) such that

∇fB = q on B.

Then there exists f ∈ C1(Ω;E) such that

∇f = q.

3. History of the local primitive gluing theorem. We are not familiar with the origin of Theorem 9.4,
which is a classical result from the theory of differential forms taking values in a Banach space. It can be
seen, for example, in [Henri CARTAN, 19, Theorem 3.8.1, p. 230], where q is “hidden” behind the closed
differential 1-form ω, where closed means that it is locally a gradient [19, Definition, p. 222].
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Proof. Let Γ be a closed path in Ω of class C1. By Definition 9.3 of a simply connected
open set, Γ is homotopic in Ω to a closed path Γ∗ consisting of a single point. Since q is
locally a gradient by the hypotheses, its line integral around a closed path is invariant
under homotopy by Theorem 8.20, so∫

Γ

q . d` =
∫

Γ∗

q . d`.

Since the line integral around a closed path consisting of a single point is zero
(Theorem 8.10 (a)), ∫

Γ

q . d` = 0E .

This holds for every Γ, which guarantees the existence of a primitive f by
Theorem 9.1. �

Optimality of Theorem 9.4. The existence of local primitives is clearly a necessary condition for the
existence of a global primitive. This condition is therefore necessary and sufficient.

On an arbitrary open set, the result no longer holds in general. An example of a function with local
primitives but no global primitive is given in Theorem 9.15, in two dimensions, and in Theorem 9.16, in
arbitrary dimensions. �

Caution. Theorem 9.4 is a gluing theorem for certain local primitives, but not all local primitives. Indeed,
it may be impossible to glue together the given local primitives fB because they may differ by a constant.
However, when Ω is simply connected, we can add a constant to each of them to glue them together. �

9.4. Explicit primitive on a star-shaped set: Poincaré’s theorem

A subset U of a vector space is said to be star shaped with respect to the point a
if, for every u ∈ U , it contains the line segment [a, u] = {a+ t(u− a) : 0 ≤ t ≤ 1}.
A set is said to be star shaped if it is star shaped with respect to one of its points.

Let us explicitly construct a primitive of a continuously differentiable vector field
q = (q1, . . . , qd) such that ∂iqj = ∂jqi for every i and j on a star-shaped open
set, a result that is weaker (see Theorem 9.14 (e)) than the conditions (9.1) and (9.3)
considered earlier for an arbitrary open set. This is called Poincaré’s theorem4.

THEOREM 9.5.– Let q ∈ C1(Ω;Ed), where E is a Neumann space and

Ω is an open subset of Rd that is star shaped with respect to a point a,

4. History of Poincaré’s theorem. Theorem 9.5 was established by Henri POINCARÉ in 1899 [63, p. 10]
in the real-valued case.
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such that, for every i and j in J1, dK,

∂iqj = ∂jqi.

Then the function defined, for every x ∈ Ω, by

q∗(x) def= (x− a) .
∫ 1

0

q(a+ t(x− a)) dt

satisfies q∗ ∈ C2(Ω;E) and
∇q∗ = q.

Proof. For every x ∈ Ω and j ∈ J1, dK, we denote

Qj(x) =
∫ 1

0

qj(a+ t(x− a)) dt.

Suppose for now that differentiation under the integral sign is admissible, so that
Qj ∈ C1(Ω;E) and

∂iQj(x) =
∫ 1

0

t ∂iqj(a+ t(x− a)) dt. (9.6)

Then q∗(x) =
∑d
j=1(xj − aj)Qj(x), so Theorem 3.6 and the Leibniz rule give

q∗ ∈ C1(Ω;E) and

∂iq
∗(x) = Qi(x) +

d∑
j=1

(xj − aj)∂iQj(x) =

=
∫ 1

0

qi(a+ t(x− a)) + t

d∑
j=1

(x− a)j∂iqj(a+ t(x− a)) dt.

Now, apply the hypothesis ∂iqj = ∂jqi and observe that, by Theorem 3.12 (a) on
changes of variables in a derivative with T (t) = a+ t(x− a),

d
dt
(
qi(a+ t(x− a))

)
=

d∑
j=1

∂jqi(a+ t(x− a)) (x− a)j ,

since dTj/dt(t) = (x− a)j . We therefore obtain

∂iq
∗(x) =

∫ 1

0

qi(a+ t(x− a)) + t
d
dt
(
qi(a+ t(x− a))

)
dt.
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By the Leibniz rule once again, together with the expression of the integral of a
derivative from Theorem 6.4 (a), we finally obtain

∂iq
∗(x) =

∫ 1

0

d
dt
(
t qi(a+ t(x− a))

)
dt = qi(x).

This proves that
∇q∗ = q.

Hence, ∂j∂iq∗ = ∂jqi ∈ C(Ω;E), and so q∗ ∈ C2(Ω;E).

We still need to check (9.6). LetB be an open ball such thatB ⊂ Ω. Theorem 4.27
on differentiating under the integral sign onB×(0, 1) with f(x, t) = qj(a+t(x−a))
and gi(x, t) = t ∂iqj(a + t(x − a)) then gives (9.6) on each B and therefore on the
whole of Ω. Indeed, the hypotheses of this theorem are satisfied:
— The functions f and gi are uniformly continuous and bounded because they are
uniformly continuous and bounded on the compact set B × [0, 1] by Heine’s theorem
(Theorem A.34), since they are continuous on this set.
— For any fixed t, the mapping x 7→ f(x, t) is differentiable and ∂if(x, t) = gi(x, t).
This is an elementary fact, which completes the proof of (9.6), and hence the proof of
Theorem 9.5. �

9.5. Explicit primitive under the weak Poincaré condition

Before we consider the weak Poincaré condition, let us observe that every open
set Ω that is star shaped, with respect to a point a, is the union of the subsets Ω∗a1/n of
the Ω1/n that are star shaped with respect to a.

THEOREM 9.6.– Let Ω be an open subset of Rd that is star shaped with respect to a
point a and, for every n ∈ N, let

Ω∗a1/n
def= {x ∈ Ω : [a, x] ⊂ Ω1/n},

where [a, x] = {a+ t(x− a) : 0 ≤ t ≤ 1} and Ω1/n = {x ∈ Ω : B(x, 1/n) ⊂ Ω}.

Then Ω∗a1/n is a star shaped open set and

Ω =
⋃
n∈N

Ω∗a1/n.
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Ω
1/n

Ω∗a
1/n

a

Figure 9.1. Subset Ω∗a1/n of Ω1/n that is star shaped with respect to a.
Ω∗a1/n is dark gray and Ω1/n is the union of the light gray and dark gray regions

Proof of Theorem 9.6. The set Ω∗a1/n is star shaped because, if x ∈ Ω∗a1/n, then, for all
y ∈ [a, x], we have [a, y] ⊂ [a, x] ⊂ Ω1/n, so y ∈ Ω∗a1/n and hence [a, x] ⊂ Ω∗a1/n.

Let us show that this set is open. Let x ∈ Ω∗a1/n. Then [a, x] is a compact set
included in Ω1/n, which is open (Theorem 7.2 (a)), so the strong inclusion theorem
(Theorem A.22) gives r > 0 such that [a, x] +B(0, r) ⊂ Ω1/n. If y ∈ B(x, r),

[a, y] = {a+ t(x− a) + t(y − x) : 0 ≤ t ≤ 1} ⊂ [a, x] +B(0, r) ⊂ Ω1/n,

since |t(y − x)| ≤ tr ≤ r, so y ∈ Ω∗a1/n. This proves that Ω∗a1/n is open.

Finally, Ω is the union of the Ω∗a1/n because, if x ∈ Ω, then [a, x] ⊂ Ω so, again by
Theorem A.22, there exists r > 0 such that [a, x] +B(0, r) ⊂ Ω; then [a, x] ⊂ Ω1/n,
that is, x ∈ Ω∗a1/n, whenever n ≥ 1/r. �

If q is merely continuous, Poincaré’s condition ∂iqj = ∂jqi is no longer
meaningful in the “classical” sense, but we can state a “weak” formulation that still
guarantees the existence of an explicit primitive on a star-shaped open set as follows:

THEOREM 9.7.– Let q ∈ C(Ω;Ed), where E is a Neumann space and

Ω is an open subset of Rd that is star shaped with respect to a point a,

such that, for every i and j in J1, dK and every ϕ ∈ K∞(Ω),∫
Ω

qj ∂iϕ =
∫

Ω

qi ∂jϕ. (9.7)

Then the function defined by

q∗(x) def= (x− a) .
∫ 1

0

q(a+ t(x− a)) dt

satisfies q∗ ∈ C1(Ω;E) and
∇q∗ = q.
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Weak Poincaré condition. We name weak Poincaré condition the equality (9.7) because, when
q ∈ C1(Ω;Ed), it is equivalent to Poincaré’s condition ∂iqj = ∂jqi as we will see in Theorem 9.9. �

Proof of Theorem 9.7. We will proceed in four steps.

1. Regularization. Let q � ρn ∈ C∞(Ω1/n;Ed) be a regularized function of q given
by Definition 7.7, where the support of ρn is included in the ball B(0, 1/n) and
Ω1/n = ΩB(0,1/n), namely the set {x ∈ Rd : B(x, 1/n) ⊂ Ω}. Let us show that,
for every i and j,

∂i(qj � ρn)− ∂j(qi � ρn) = 0E on Ω1/n. (9.8)

The expression of the derivative of a weighting from Theorem 7.4 (b) and the second
expression of the weighting itself from Theorem 7.2 (c) give

∂i(q � ρn)(x) = −(q � ∂iρn)(x) = −
∫

Ω

q(y) ∂iρn(y − x) dy.

Hence,

∂i(qj � ρn)(x)− ∂j(qi � ρn)(x) =
∫

Ω

qi(y) ∂jρn(y − x)− qj(y) ∂iρn(y − x) dy.

The right-hand side is zero by the weak Poincaré condition (9.7) applied to ϕ defined
by ϕ(y) = ρn(y − x), which establishes (9.8).

2. Primitive on star shaped subsets. Let Ω∗a1/n be the subset of Ω1/n that is star shaped
with respect to a. This set is open and star shaped (Theorem 9.6). By Poincaré’s
theorem (Theorem 9.5), the property (9.8) implies that the function defined on Ω∗a1/n
by

q∗n(x) = (x− a) .
∫ 1

0

(q � ρn)(a+ t(x− a)) dt (9.9)

is a primitive of q � ρn. In other words, for every i,

∂iq
∗
n = qi � ρn on Ω∗a1/n.

3. Convergence. Let k ∈ N and n ≥ k. Then Ω∗a1/k ⊂ Ω∗a1/n ⊂ Ω1/n and the
regularizing property from Theorem 7.10 (a) gives, as n→∞,

qi � ρn → qi on C(Ω∗a1/k;E).

That is,
∂iq
∗
n → qi on C(Ω∗a1/k;E).



202 Continuous Functions

Moreover the expression (9.9) of q∗n implies, as we will verify in Lemma 9.8,

q∗n → q∗ on C(Ω∗a1/k;E). (9.10)

The completeness property of C1(Ω∗a1/k;E) from Theorem 2.23 then shows that
q∗ ∈ C1(Ω∗a1/k;E) and

∂iq
∗ = qi on Ω∗a1/k.

4. Gluing. Since the (Ω∗a1/k)k≥1 cover Ω (Theorem 9.6), it follows that q∗ belongs to
C1(Ω;E) and ∇q∗ = q on the whole of Ω. �

We still need to establish the convergence (9.10), which corresponds to the
following property.

LEMMA 9.8.– Let q ∈ C(Ω;Ed), where Ω is a star-shaped open subset of Rd with
respect to a point a and E is a Neumann space, and, for every x ∈ Ω, let

q∗(x) def= (x− a) .
∫ 1

0

q(a+ t(x− a)) dt.

Then the mapping q 7→ q∗ is linear and continuous, and therefore sequentially
continuous, from C(Ω;Ed) into C(Ω;E).

Proof. Let {‖ ‖E;ν : ν ∈ NE} be the family of semi-norms of E. Definition 1.3 (a) of
the semi-norms of C(Ω;E), together with the inequality (2.2) (p. 31) and the bound on
the semi-norms of the integral from Theorem 4.17 (b), implies that, for every compact
set K ⊂ Ω and every ν ∈ NE ,

‖q∗‖C(Ω;E);K,ν = sup
x∈K
‖q∗(x)‖E;ν ≤ c sup

x∈D
‖q(x)‖Ed;ν = c ‖q‖C(Ω;Ed);D,ν ,

where c = supx∈K |x − a| and D = {a + t(x − a) : x ∈ K, 0 ≤ t ≤ 1}. The final
term is well defined (Definition 1.3 (a)) because D is compact in Rd (since it is closed
and bounded) and included in Ω (since this set is star shaped).

By the characterization of continuous linear mappings from Theorem 1.25, this
shows that the mapping q 7→ q∗ is continuous. It is therefore sequentially continuous,
like any continuous mapping (Theorem A.29). �

Continuity taking values in C1(Ω;E). It follows from Lemma 9.8 and Theorem 9.7 that, if Ω is star
shaped, the mapping q 7→ q∗ is continuous from C(Ω;Ed) into C1(Ω;E). Indeed, q 7→ ∂iq

∗ is also
continuous from C(Ω;Ed) into C(Ω;E) because ∂iq∗ = qi.

This property is generalized to an arbitrary open set Ω in Theorem 9.18. �

Let us check that the hypothesis (9.7) of Theorem 9.7 is a weak version of
Poincaré’s condition ∂iqj = ∂jqi.
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THEOREM 9.9.– Let q ∈ C1(Ω;Ed), where Ω is an open subset of Rd and E is a
Neumann space. Then

∂iqj = ∂jqi,

where i and j belong to J1, dK if and only if, for every ϕ ∈ K∞(Ω),∫
Ω

qj ∂iϕ =
∫

Ω

qi ∂jϕ.

Proof. Direct implication. If ∂iqj = ∂jqi, then, applying the formula of integration
by parts from Theorem 6.12 twice, we obtain∫

Ω

qi ∂jϕ = −
∫

Ω

∂jqi ϕ = −
∫

Ω

∂iqj ϕ =
∫

Ω

qj ∂iϕ.

Converse. Let ϕ ∈ K∞(Ω). Again applying the formula of integration by parts from
Theorem 6.12, we obtain

∫
Ω
qi ∂jϕ = − ∫

Ω
∂jqi ϕ and

∫
Ω
qj ∂iϕ = − ∫

Ω
∂iqj ϕ.

Therefore, by subtraction,∫
Ω

qi ∂jϕ− qj ∂iϕ =
∫

Ω

(∂iqj − ∂jqi)ϕ.

If this vanishes for every ϕ, then ∂iqj = ∂jqi by the weak vanishing property from
Theorem 6.13. �

9.6. Primitives on a simply connected open set

Let us show that, on a simply connected open set, Poincaré’s condition ∂iqj = ∂jqi
guarantees the existence of a primitive for a continuously differentiable field.

THEOREM 9.10.– Let q ∈ C1(Ω;Ed), where E is a Neumann space and

Ω is a simply connected open subset of Rd,

such that, for every i and j in J1, dK,

∂iqj = ∂jqi.

Then there exists f ∈ C2(Ω;E) such that

∇f = q.

Proof. By Poincaré’s theorem (Theorem 9.5), the hypothesis ∂iqj = ∂jqi implies the
existence of a primitive on every ball B ⊂ Ω. This implies the existence of a primitive
on the whole of Ω by Theorem 9.4 on gluing together local primitives, since Ω is
simply connected. �
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Optimality of Theorem 9.10. The condition ∂iqj = ∂jqi is necessary and sufficient for a continuously
differentiable field q to have a primitive because, if q = ∇f , then

∂iqj = ∂i∂jf = ∂j∂if = ∂jqi.

When Ω is simply connected, this condition is therefore necessary and sufficient.

For an arbitrary open set Ω, it is necessary but not always sufficient (Theorem 9.16). �

Let us remain in the case of a simply connected open set and show that, if q is
merely continuous, the weak Poincaré condition also guarantees the existence of a
primitive.

THEOREM 9.11.– Let q ∈ C(Ω;Ed), where E is a Neumann space and

Ω is a simply connected open subset of Rd,

such that, for every i and j in J1, dK and all ϕ ∈ K∞(Ω),∫
Ω

qj ∂iϕ =
∫

Ω

qi ∂jϕ. (9.11)

Then there exists f ∈ C1(Ω;E) such that

∇f = q.

Proof. By Theorem 9.7, the hypothesis (9.11) implies the existence of a primitive on
every ball B ⊂ Ω. This implies the existence of a primitive on the whole of Ω by
Theorem 9.4 on gluing together local primitives, since Ω is simply connected. �

Optimality of Theorem 9.11. When Ω is simply connected, the condition (9.11) is necessary and sufficient
for q to have a primitive because, if q = ∇f , then, for every ϕ ∈ K∞(Ω),Z

Ω
qj ∂iϕ =

Z
Ω
∂jf ∂iϕ = −

Z
Ω
f ∂j∂iϕ = −

Z
Ω
f ∂i∂jϕ =

Z
Ω
∂if ∂jϕ =

Z
Ω
qi ∂jϕ.

For an arbitrary open set Ω, it is necessary but not always sufficient (Theorem 9.14 (e)). �

Let us show that, on a simply connected open subset of R2, every divergence-free
field v = (v1, v2) derives from a stream function. This is known as Haar’s lemma5.

THEOREM 9.12.– Let v ∈ C1(Ω;E2), where Ω is a simply connected open subset
of R2 and E is a Neumann space, such that

∂1v1 + ∂2v2 = 0E .

Then there exists a stream function f ∈ C2(Ω;E) such that:

v1 = ∂2f, v2 = −∂1f.

5. History of Haar’s lemma. Alfréd HAAR showed Theorem 9.12 with E = R between 1926 [43] and
1929 [44].
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Proof. The field q = (−v2, v1) satisfies

∂1q2 − ∂2q1 = ∂1v1 + ∂2v2 = 0E ,

so, by Theorem 9.10, it has a primitive f such that

∂1f = q1 = −v2 and ∂2f = q2 = v1. �

Abbreviated formulation of Theorem 9.12. Denoting by ⊥ a rotation of π/2 in the counterclockwise
direction, and so∇⊥ = (∂2,−∂1), the result of Theorem 9.12 can be stated as follows:

If Ω is simply connected and∇ . v = 0E , then there exists f such that∇⊥f = v. (9.12)

�

Uniqueness. The stream function f obtained in Theorem 9.12 is unique up to an additive constant on each
connected component of Ω by Theorem 9.17 (b) (since∇f is unique). �

Weak existence condition. By Theorem 9.11, there exists a stream function f ∈ C1(Ω;E) whenever the
divergence of the field v = (v1, v2) is zero in the following weak sense: for every ϕ ∈ K∞(Ω),Z

Ω
v1∂1ϕ+ v2∂2ϕ = 0E . �

Stream functions in arbitrary dimensions. In three and more dimensions, constructing a stream
function associated with a divergence-free function becomes much more complex. Details may be found,
for example, in [GIRAULT–RAVIART, 40, Chapter I, § 3.3]. �

9.7. Comparison of the existence conditions for a primitive

Let us introduce the subspace of fields with a primitive.

DEFINITION 9.13.– Let Ω be an open subset of Rd and E a Neumann space. We
denote

C∇(Ω;Ed) def= {q ∈ C(Ω;Ed) : ∃f ∈ C1(Ω;E) such that ∇f = q},

which is a vector space that we endow with the semi-norms of C(Ω;Ed).

Let us compare the conditions used in previous sections to obtain the existence of
a primitive.

THEOREM 9.14.– Let q ∈ C(Ω;Ed), where Ω is an open subset of Rd and E is a
Neumann space. Then:
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(a) q ∈ C∇(Ω;Ed) ⇔ ∃f ∈ C1(Ω;E) such that ∇f = q

⇔
∫

Ω

q . ψ = 0E , ∀ψ ∈ K∞(Ω; Rd) such that ∇ . ψ = 0

⇔
∫

Γ

q . d` = 0E , ∀Γ closed C1 path in Ω.

(b) If Ω is simply connected,

q ∈ C∇(Ω;Ed) ⇔ ∃f ∈ C1(Ω;E) such that ∇f = q

⇔
∫

Ω

q . ψ = 0E , ∀ψ ∈ K∞(Ω; Rd) such that ∇ . ψ = 0

⇔
∫

Γ

q . d` = 0E , ∀Γ closed C1 path in Ω

⇔
∫

Γ

q . d` =
∫

Γ∗

q . d`, ∀Γ and Γ∗ homotopic closed C1 paths

⇔
∫

Ω

qj∂iϕ =
∫

Ω

qi∂jϕ, ∀i, ∀j, ∀ϕ ∈ K∞(Ω)

⇔ ∀ ball B b Ω, ∃fB ∈ C1(B;E) such that ∇fB = q on B.

(c) ∀ ball B b Ω, ∃fB ∈ C1(B;E) such that ∇fB = q on B

⇔
∫

Ω

qj∂iϕ =
∫

Ω

qi∂jϕ, ∀i, ∀j, ∀ϕ ∈ K∞(Ω)

⇔
∫

Γ

q . d` =
∫

Γ∗

q . d`, ∀Γ and Γ∗ homotopic closed C1 paths.

(d) If q ∈ C1(Ω;Ed),

∂iqj = ∂jqi ⇔
∫

Ω

qj∂iϕ =
∫

Ω

qi∂jϕ, ∀ϕ ∈ K∞(Ω).

(e) Having q ∈ C∇(Ω;Ed) implies the properties of (c), but there exists open sets Ω
for which the converse is false.

Case of a field with compact support. If the support of q is compact and included in Ω, the equivalences
in (b) hold even when Ω is not simply connected.

Indeed, if q has local primitives on Ω, then its extension by 0E has local primitives on the whole of
Rd, which is simply connected, so it has a primitive on the whole of Rd whose restriction is a primitive of q
on Ω. Therefore, the properties in (c) are equivalent to those in (a). �
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Proof of Theorem 9.14. (a) First equivalence. For every f ∈ C1(Ω;E) and every
ψ ∈ K∞(Ω; Rd), the formula of integration by parts from Theorem 6.12 gives∫

Ω

∇f . ψ =
d∑
i=1

∫
Ω

∂if ψi = −
d∑
i=1

∫
Ω

f ∂iψi = −
∫

Ω

f ∇ . ψ.

If ∇f = q, we therefore have
∫

Ω
q . ψ = − ∫

Ω
f ∇ . ψ = 0E whenever ∇ . ψ = 0.

The converse is given by the orthogonality theorem (Theorem 9.2).

Second equivalence. If q = ∇f , its line integral around closed paths is zero
(Theorem 8.11 (b)). The converse is given by Theorem 9.1.

(c) First equivalence. If
∫

Ω
qj∂iϕ =

∫
Ω
qi∂jϕ for all i, j and ϕ, and if B is a ball

included in Ω, then Poincaré’s theorem (Theorem 9.11) shows that, by restricting to
the ϕ with support in B, q has a primitive fB on this set.

Consider now the converse (which is straightforward when Ω is simply connected,
see the comment Optimality of Theorem 9.11, p. 204, but here Ω is an arbitrary open
set).

Letϕ ∈ K∞(Ω) with supportK. Each point x ofK is contained in an open ballBx
included in Ω, so, since K is compact, we can take a finite subcovering (Bm)m∈M ,
where Bm denotes Bxm . Let (αm)m∈M be a partition of unity subordinate to the
covering by the Bm of their union ω, given by Theorem 7.18. The support of qj∂iϕ is
included in the support of ϕ and therefore certainly included in the open set ω, so its
integral may be restricted to ω by Theorem 4.17 (a), that is,∫

Ω

qj∂iϕ =
∫
ω

qj∂iϕ.

Since
∑
m∈M αm = 1 on ω, it follows that∫

Ω

qj∂iϕ =
∫
ω

qj∂i

( ∑
m∈M

αmϕ
)

=
∑
m∈M

∫
ω

qj∂i(αmϕ). (9.13)

Suppose now that q has a primitive on each ball, and let fm be a primitive on Bm.
Since the support of αmϕ is included in Bm, together with Theorem 6.12 on
integration by parts, it follows that∫

ω

qj∂i(αmϕ) =
∫
Bm

∂jfm∂i(αmϕ) = −
∫
Bm

fm∂j∂i(αmϕ).

The derivatives commute by Schwarz’s theorem (Theorem 2.12), so we can exchange i
and j in this formula, and therefore in (9.13), which gives∫

Ω

qj∂iϕ =
∫

Ω

qi∂jϕ.
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Second equivalence. If q = ∇fB on each ball B included in Ω, the homotopy
invariance theorem (Theorem 8.20) gives

∫
Γ
q . d` =

∫
Γ∗
q . d` for every pair of

homotopic closed paths Γ and Γ∗ in Ω.

Conversely, suppose that this property is satisfied and letB be a ball included in Ω.
Every closed path Γ of B is homotopic in this set to a closed path Γ∗ consisting of
a single point. Since the line integral is zero around Γ∗ (Theorem 8.10 (a)), it is also
zero around Γ, and therefore Theorem 9.1 gives fB such that q = ∇fB on B.

(b) If Ω is simply connected, ∇f = q is equivalent to ∇fB = q on each B by
Theorem 9.4 on gluing together local primitives, and therefore the properties of (a)
are equivalent to those of (c).

(d) This is Theorem 9.9.

(e) If ∇f = q on Ω, then this certainly also holds on B. The converse is false, as
shown by the examples that we will construct in Theorems 9.15, for d = 2, and 9.16,
for arbitrary d ≥ 2. �

9.8. Fields with local primitives but no global primitive

Let us show that there exist open sets on which the existence of local primitives
does not guarantee the existence of a global primitive. Let us begin with an example
in two dimensions with real values.

THEOREM 9.15.– Let Ω = {x ∈ R2 : |x| > 1}, and let q ∈ C∞(Ω; R2) be the field
defined for every x ∈ Ω by q(x) = (−x2, x1)/|x|2.

For every ball B included in Ω, there exists fB ∈ C∞(B) such that ∇fB = q
on B. But there does not exist a function f ∈ C1(Ω) such that ∇f = q on the whole
of Ω.

Proof. In polar coordinates,∇ = er∂r + (eθ/r)∂θ and q(θ, r) = eθ/r, so

∇θ = q except at θ = 0.

Indeed, θ is discontinuous on the half-line D = {(r, θ) : θ = 0}, since it is equal to 0
on one side and 2π on the other.

The field q does not have a primitive, as this primitive would necessarily be
continuous (Theorem 2.10) and its restriction to Ω \ D would be of the form θ + c
(Theorem 2.7), which is a contradiction.



Primitives of Continuous Functions 209

x1

x2

θ = 0

θ = π/2

θ = π

θ = 3π/2

θ = 2π

Ω
x

q(x)

θ

Figure 9.2. Field q with local primitive θ but no global primitive.
The set Ω is the exterior of the dashed disk

Nevertheless, ∇θ = q on every ball B because q is also a gradient on any ball
that intersects with D, which can be seen by choosing another half-line as the origin
of θ. �

Let us show that such open sets also exist in arbitrary dimensions, d ≥ 2.

THEOREM 9.16.– Let d ≥ 2, and let E be a Neumann space that is not just {0E}.

Then there exists an open subset Ω of Rd and a field q ∈ C∞(Ω;Ed) such that:
for every ball B included in Ω, there exists a function fB ∈ C∞(B;E) such that
∇fB = q on B, but there does not exist a function f ∈ C1(Ω;E) such that ∇f = q
on the whole of Ω.

Proof. Let Ω2 be the open subset of R2 and q the field given in Theorem 9.15, and
let u ∈ E, u 6= 0E . In two dimensions, the field defined on Ω2 by q(x) = q(x)u
is as required. In dimensions higher than two, the field defined on Ω2 × Rd−2 by
q(x1, . . . , xd) = (q1(x1, x2),q2(x1, x2), 0, . . . , 0)u is as required. �

Is simple connectedness necessary for gluing together local primitives? Recall that simple
connectedness is sufficient for gluing together local primitives, that is, to guarantee that any field with
local primitives has a global primitive by Theorem 9.4 and therefore to guarantee that a field satisfying
Poincaré’s condition, whether the strong or the weak variant, has a primitive.

Conversely, it is necessary if d = 1 or 2, but this is no longer the case when d ≥ 3, although simple
connectedness remains necessary for d = 3 if certain regularity conditions are imposed on the open set.
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These results, which were communicated to me by Pierre DREYFUSS and Nicolas DEPAUW, appeal to
difficult ideas from algebraic topology, presented in [DREYFUSS, 29]. An overview is given below.

Case where d = 1. Every open subset of R is simply connected and therefore has the local primitive gluing
property.

Case where d = 2. Every open subset Ω of R2 that is not simply connected has at least one hole; in other
words, there exists a point z /∈ Ω enclosed by a closed path Γ in Ω. This set therefore does not have the
local primitive gluing property, since the field q introduced in Theorem 9.15, after being translated in such
a way that z is at the origin, is locally a gradient on Ω but globally not a gradient.

Case where d = 3. The exterior of the Alexander horned sphere (presented and studied in [HATCHER, 45,
p. 171]) has the local primitive gluing property but is not simply connected.

However, for an open subset of R3 that is bounded and locally on one side of the graph of a continuous
function, the local primitive gluing property implies simple connectedness.

Case where d ≥ 4. The local primitive gluing property of an open subset of Rd does not imply simple
connectedness, even for bounded open sets that are locally on one side of the graph of a continuous function.

�

9.9. Uniqueness of primitives

Let us show that primitives are unique up to an additive constant on each connected
component of the domain.

THEOREM 9.17.– Let q ∈ C∇(Ω;Ed), where Ω is an open subset of Rd and E is a
Neumann space. Then:

(a) The field q has infinitely many primitives.

(b) The set of all primitives may be deduced from a given primitive by adding
arbitrary constants to each connected component Ωm of Ω.

(c) Given a point am ∈ Ωm and cm ∈ E for each connected component Ωm of Ω,
there exists one and only one primitive f such that: for every m,

f(am) = cm.

Reminder. We denote by C∇(Ω;Ed) the space of continuous fields with a primitive (Definition 9.13). �

Proof. (a) Every function f + c, where c ∈ E, is a primitive of q.

(b) If f and f ′ are two primitives, ∇(f ′ − f) = 0, so, by Theorem 2.7, f ′ − f is
constant on each Ωm. Conversely, f + c is a primitive if c is constant on each Ωm.
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(c) If g is a primitive, then the function defined on each Ωm by f = g − g(am) + cm
is a primitive such that f(am) = cm for every m. This is the only one because, if f ′

is another primitive satisfying this property, then f − f ′ is zero at am and is constant
on Ωm by (b) for every m, and is therefore zero on the whole of Ω. �

Case of a connected open subset. If Ω is connected, then its only connected component is Ω itself, which
simplifies the statement of parts (b) and (c) of Theorem 9.17. �

9.10. Continuous primitive mapping

Let us construct a continuous linear primitive mapping.

THEOREM 9.18.– Let q ∈ C∇(Ω;Ed), where Ω is an open subset of Rd and E is a
Neumann space. For each connected component Ωm of Ω, let am ∈ Ωm. Finally, let
f ∈ C1(Ω;E) be the unique function such that

∇f = q, f(am) = 0E , ∀m.
Then the mapping q 7→ f is linear and continuous and therefore sequentially
continuous from C∇(Ω;Ed) into C1(Ω;E).

This mapping coincides with the mapping q 7→ q∗ given by Theorem 9.1.

Reminder. The space C∇(Ω;Ed) of continuous fields that have a primitive is endowed with the semi-
norms of C(Ω;Ed) by Definition 9.13. �

Notation. We could denote this mapping by∇−1, that is,∇−1q
def
= f , or alternatively∇−1 def

= q∗. �

Before giving the proof, let us state a consequence of sequential continuity.

THEOREM 9.19.– Consider a sequence (fn)n∈N and a function f of C1(Ω;E),
where Ω is an open subset of Rd and E is a Neumann space. For each connected
component Ωm of Ω, let am ∈ Ωm. Suppose that, as n→∞,

∇fn → ∇f in C(Ω;Ed)

and, for every m,
fn(am)→ f(am) in E.

Then
fn → f in C1(Ω;E).

Proof of Theorem 9.19. Let gn and g be the functions of C1(Ω;E) defined on each Ωm
by gn = fn − fn(am) and g = f − f(am). Theorem 9.18 shows that gn → g in
C1(Ω;E), which implies that fn → f in C1(Ω;E). �
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Proof of Theorem 9.18. Let y ∈ Ω, Ωm the connected component of Ω containing y, Γ
a piecewise C1 path joining am to y in Ωm (such a path exists by Theorem 8.5), and
ε > 0 such that the ball B(y, ε) = {x ∈ Rd : |x− y| ≤ ε} is included in Ω.

Let x ∈ B̊(y, ε) and Λ the rectilinear path joining y to x, i.e. the path defined on
[0, 1] by Λ(t) = y + t(x− y). The path Γ

→∪ Λ joins am to x in Ωm, so the
expression of the line integral of a gradient (Theorem 8.11 (a)) and the expression of
their concatenation (Definition 8.15) give

f(x) = f(am) +
∫

Γ
→∪ Λ

∇f . d` =
∫

Γ

q . d`+
∫

Λ

q . d`.

Let {‖ ‖E;ν : ν ∈ NE} be the family of semi-norms of E. The bound on the semi-
norms of the line integral from Theorem 8.12 (a) gives, for every ν ∈ NE ,

‖f(x)‖E;ν ≤ (γΓ + γΛ) sup
z∈[Γ]∪B(y,ε)

‖q(z)‖Ed;ν ,

where [Γ] is the image of Γ, γΓ = supti≤t≤te |Γ′(t)| and γΛ = sup0≤t≤1 |Λ′(t)|, and
so γΛ = |x− y| ≤ ε.

Consider now a compact set K ⊂ Ω. The open sets B̊(y, ε) cover this set, so there
exists (Definition A.17 (a)) a finite subcoveringR. Thus,

sup
x∈K
‖f(x)‖E;ν ≤ c sup

z∈D
‖q(z)‖Ed;ν ,

where c = supR γΓ + ε is finite and D =
⋃
R[Γ] ∪ B(y, ε). But D is compact,

as a finite union of closed and bounded sets (which means that it is itself closed
and bounded (Theorem A.10) in Rd and therefore compact by the Borel–Lebesgue
theorem (Theorem A.23 (b))). And it is included in Ω. Therefore, by Definition 1.3 (a)
of the semi-norms of C(Ω;E), the above inequality can be written as

‖f‖C(Ω;E);K,ν ≤ c ‖q‖C(Ω;Ed);D,ν .

By Definition 2.14 (a) of the semi-norms of C1(Ω;E), since K ⊂ D and ∂if = qi,

‖f‖C1(Ω;E);K,ν = sup{‖f‖C(Ω;E);K,ν , sup
1≤i≤d

‖∂if‖C(Ω;E);K,ν} ≤
≤ sup{c, 1}‖q‖C(Ω;Ed);D,ν .

By the characterization of continuous linear mappings from Theorem 1.25, this proves
that the mapping q 7→ f is continuous. It is therefore sequentially continuous, like any
continuous mapping (Theorem A.29). �





Bibliography

[1] ARCHIMEDES, Opere omnia, three volumes, J.-L. Heiberg ed., Teubner, 1913–1915 (= Les Œuvres
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[15] BOURBAKI, N., Variétés différentielles et analytiques : fascicule de résultats, Hermann, 1971.

[16] CAJORI, F., A History of Mathematical Notations, two volumes, Open Court (Chicago), 1974.

[17] CANTOR, G., Gesammelte Abhandlungen, Springer, 1932.
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[53] LEBESGUE, H., Leçons sur l’intégration et la recherche des fonctions primitives, Gauthiers-Villars,
1904.

[54] LEIBNIZ, W. G., Nova metodus pro maximis et minimis, itemque tangentibus, quae nec fractas nec
irrationales quantitates moratur, et singulare pro illis calculi genus, Acta Eruditorum, 1884, 467–473

[55] LERAY, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63 (1934),
193–248.
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[68] SCHWARTZ, L., Analyse I. Théorie des ensembles et topologie. Hermann, 1991.

[69] SCHWARZ, H. A., Zur integration der partiellen Differentialgleichung, Journal reine angew. Math.,
74 (1872), 218–253
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Poincaré’s theorem 197



246 Continuous Functions

Positive (function) 233
Precompact (set) 231
Preimage (of a set) 233
Primitive of a function: Existence of a — 194

id. on a simply connected open set 204
Gluing of local —s 196
Non-existence of a — 209
Uniqueness of a — 210

Product: — of functions 61
— of semi-normed spaces 59
— of two matrices 114
Tensor — of two functions 129

R

Rectilinear (path) 179
Regularization: Global — of a function 163

Local — of a function 157
Relatively compact (set) 231
Reparametrization (of a path) 174
RIEMANN, Bernhard Georg Friedrich 3

S

SCHWARZ, Hermann Amandus 39
Schwarz’s theorem 40
Segment 34
Semi-norm 228
Semi-normed (space) 1
Separable (sequentially — set) 230
Separated (semi-normed space) 2
Separation of variables:

— of a continuous function 23
— in the integral of a cont. function 125

Sequence: — (definition) 227
Convergent — of a semi-normed space 3
Cauchy — 10
Real convergent — 228

Sequential completion (of a space) 93
Sequentially: — closed (set) 229

— compact (set) 231
— complete (set) 10
— continuous (mapping) 233
— dense (subset) 230
— separable (set) 230

Signature of a permutation 112
SIMON, Jacques 147, 183, 185
SMIRNOV, Stanislav Konstantinovitch 183
SMITH, William Robertson 33
Space: Banach — 11

Dual — (E′) 236
Extractable — 237
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Poincaré’s — 197
Primitive gluing — 196



Index 247

Schwarz’s — 40
Separation — 231
Strong inclusion — 231
— on differentiation of comp. functions 69
— on differentiation of comp. mappings 237
— on differentiation under int. sign 103
— on integrating under the integral sign 123
— on invariance under homotopy 186
Urysohn’s — 80

THOMAE, Carl Johannes 39
Topological: — equality 7

— inclusion 7
Topology: — (definition) 7

— of uniform convergence 4
Weak — of a semi-normed space 236

Translated function 77

Tube 183
Tubular (flow) 183

U

Uniformly continuous (mapping) 233
Upper bound (of an ordered set) 228
URYSOHN, Pavel Samuilovitch 80
Urysohn’s lemma 80

V, W

VOLTERRA, Vito 147
Weak (topology) 236
WEIERSTRASS, Karl Theodor Wilhelm 10
Weierstrass (Bolzano — theorem) 232
Weighted function 148


